
Phillip Krigbaum

ME 450 Sect 01

Project 1 Part 1

Due 3/10/23

Introduction

 This report presents an analytical and numerical solution to the 2D steady-state heat

conduction problem in a rectangular domain. The problem is solved using the finite difference

method (FDM) and compared to an analytical solution obtained through separation of variables.

The results are analyzed and the error between the two solutions is calculated. The FDM solution

is found to have a relatively low error, indicating good agreement with the analytical solution.

The report concludes by discussing the strengths and weaknesses of each method and their

suitability for different types of problems.

Methods

To start the finite difference method (FDM) we start with the energy balance equation:

 𝑑𝐸

𝑑𝑡
= 0 = �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 + �̇�𝑔𝑒𝑛

(Eqn. 1)

We set the energy balance equation equal to 0 because the energy is not changing in time. We have a

constant temperature at each surface through time. For this problem we are told that the energy

generation is also equal to zero. This means that there is no energy being created in the plate. Due to

this, we are able to reduce the above equation into the following:

 �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 = 0

(Eqn. 2)

Using this as our base, we are able to set up nodes throughout the plate in order to estimate the

heat transfer through the plate. A node is just a point on the plate that we decide to look at. The

more nodes we place on the plate, the more accurate the estimation becomes. Once we decide

how many nodes we want on the plate we begin to analyze how the heat transfer through each

node. To do this we must first classify each node. There are 9 classifications that a node can

have. The first four classifications are “corner nodes” this means that the node is closest to the

corner of the plate. There are four corner nodes because there are four corners in the array on

nodes. The next 4 classifications are “surface nodes” these are the nodes that are closest to the

surface of the plate and are in between 2 corner nodes. There are four surface nodes because

there are 4 sides to the array of nodes. The final classification is an “interior node” this is a node

that is surrounded by other nodes and is not closest to a surface.

In order to examine the heat flow through the plate, we look at how the heat flows through the

nodes. To do this we examine the heat flow through each individual node coming from all 4

directions. We use the conduction heat transfer equation below to examine the heat flow through

the node:

𝑞 = −𝑘𝐴𝑥

𝑑𝑇

𝑑𝑥

(Eqn. 3)

Using this equation, we are able to set up the heat transfer through a node from all four

directions. For example, if we set up a 3x3 node matrix where each node is dx apart in the x

direction and dy apart in the y direction as shown below:

 TNorth

TWest

Node 1
(NW)

Node 2
(Top)

Node 3
(NE)

Node 4
(Left)

Node 5
(Center)

Node 6
(Left)

Node 7
(SW)

Node 8
(Bottom)

Node 9
(SE)

TEast

 TSouth

Figure 1

We would be able to analyze the heat transfer through each node. First, we would need to classify each

node. The corner nodes are [1,3,7,9], the surface nodes are [2,4,6,8] and the interior node is [5]. After

classifying the nodes we are able to define the heat transfer coming through each side of every node. If

it is a corner node or a surface node, the difference in temperature from at least one direction is based

on the surface temperature. This gives us an equation such as:

𝑞𝑇𝑜𝑝 = −𝑘

(𝑇𝑁𝑜𝑟𝑡ℎ − 𝑇(1))

𝑑𝑦 2⁄
(𝑑𝑥 ∙ 1)

(Eqn. 4)

This equation shows the heat transfer through node 1 from the top of the node. As you can see

because node one is a corner node the temperature difference is based on the northern surface

temperature. I have also substituted dx*1 for the cross-sectional area. This is based on the

assumption that the plate is 1 meter thick. Also notice that the dx under the fraction becomes

(dy/2) this is distance between node 1 and the wall. There is one more step to take to reduce this

equation to its final form. That is dividing everything by k. We are able to do this because when

we plug this equation into the energy balance equation (Eqn. 2), we will see that k is on both

sides of the equation. This means that we can divide out the k on both sides of the equation. This

reduces the equation to:

𝑞𝑇𝑜𝑝 = −

𝑘

𝑘

(𝑇𝑁𝑜𝑟𝑡ℎ − 𝑇(1))

𝑑𝑦 2⁄
(𝑑𝑥 ∙ 1)

(Eqn. 5)

Now we can set up the equation to find the heat transfer from the left of node one. This is the

equation shown below.

𝑞𝐿𝑒𝑓𝑡 = −

𝑘

𝑘

(𝑇𝑊𝑒𝑠𝑡 − 𝑇(1))

𝑑𝑥 2⁄
(𝑑𝑦 ∙ 1)

(Eqn. 6)

The only differences between equation 5 and equation 6 is that the temperature difference is

based on the west surface temperature now. Because of this we are dividing by (dx/2) because

the distance between the west wall and node 1 is along the x axis and is half of the distance

between 2 nodes. The other difference is that the cross sectional area is based on dy instead of

dx.

Equations 5 and 6 show us how to deal with nodes when they are closest to the surfaces, but

what about when the next closest temperature point is another node? This can be seen in equation

7.

𝑞𝑅𝑖𝑔ℎ𝑡 = −

𝑘

𝑘

(𝑇(2) − 𝑇(1))

𝑑𝑥
(𝑑𝑦 ∙ 1)

(Eqn. 7)

In equation 7 the temperature difference references the node closest to the right of node 1. Due to this,

we see that the change in x is no longer divided by 2. This is because we are now traveling the full

distance between nodes.

Using equations 5, 6 and 7 as a reference, I was able to build the heat transfer equations coming from all

four directions for every node.

After defining the heat transfer equations for every node, I then added the four equations up at each

node. Adding the equations up tells us the total heat transfer into each node, the sum of these

equations represents �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 in equation 2. When we plug that sum into equation 2 it is equal to 0.

We can see this in equation 8 below. This is what allowed us to divide out the k in the earlier equation.

 𝑞𝑅𝑖𝑔ℎ𝑡 + 𝑞𝐿𝑒𝑓𝑡 + 𝑞𝑇𝑜𝑝 + 𝑞𝐵𝑜𝑡𝑡𝑜𝑚 = 0 (Eqn. 8)

Now we will plug in the equations that we found for the heat transfer from each direction. Then we will

subtract the surface temperatures to the right side of the equation. As an example, I have included the

reduced equation of node 1 in equation 9 below.

 −6𝑇(1) + 1𝑇(2) + 1𝑇(4) = −2𝑇𝑁𝑜𝑟𝑡ℎ − 2𝑇𝑊𝑒𝑠𝑡 (Eqn. 9)

Then this process is repeated for every node in the array. After all the nodes have been calculated, 2

matrices can be created. The first matrix, matrix A, is created by assigning the coefficient in front of each

temperature value to a position in the matrix. If there are 9 nodes in a system then matrix A will be a

9x9 matrix. Each row in the matrix corresponds to a node, the first row corresponds to the first node.

Then the coefficient that is in front of each temperature value will be placed in this row. The column

corresponds to the node’s temperature that follows the coefficient. For example, equation 9 is referring

to the heat transfer through node 1, so the first row in matrix A would go as follows:

[−6 1 0 1 0 0 0 0 0] . Repeating this process to fill out the rest of matrix A allows us to move to the next

step. Filling out matrix b is very easy. Just like in matrix A, the row corresponds to the node number. We

will take the entire right side of equation 9 and place that into matrix b. Repeat this for every node and

we will have filled in both matrix A and b.

This process is shown in the MATLAB code displayed in Appendix A. It is shown in the “Populate matrix

A(i,j) & b(i)” section of the code. The code loops through each node and checks for the nodes position.

Based on the position it generates the A matrix and b matrix values and identifies the node type.

After populating both matrix A and b we can plug those matrices into equation 10:

 𝑇 ∙ 𝐴 = 𝑏 (Eqn. 10)
Solving for T gives us the Temperature at every node. This is completed in the “Solve for unknown

vector T(i)” section of Appendix A.

After solving for the Temperature at each node we must verify our solution. We will do this a couple of

different ways. The first method is to verify the T at each node visually. To aid in this, the MATLAB

attached in appendix A creates a surface plot of the temperature. This plot is shown in Figure 2.

Figure 2

This plot allows us to verify that the temperatures make sense based on what is given in the problem.

For our problem, the north surface has a temperature of 40 C while the other 3 surfaces have a

temperature of -10 C. The surface plot shown in Figure 2 verifies this by showing a decrease in

temperature as you move down the plat in both the x and y direction. There is a sharper decrease in

temperature in the x direction. This makes sense because the x direction is shorter than the y direction

in this problem.

In order to gain more insight, I have also plotted T as a heatmap and as a contour plot. Both plots shown

in Figure 3 Figure 4 are the plate in 2 dimensions. These

figures allow us to visualize how the heat is diffusing through the plate and they verify that our FDM

model is accurate.

Figure 3 Figure 4

In order to ensure that our code accurately assigned each node’s classification, I have displayed each

node on a heat map shown in Figure 5

Figure 5

Figure 5 displays each node in its proper location in the nodal array. It also displays the classification that

the node was given. This allows me to confirm that each node was given the proper classification and

therefore the correct math was completed to fill both matrix A and b.

After verifying visually that the FDM model works properly, I needed to verify it analytically. To do this I

calculated the heat rate coming from the top, right, bottom and left side of each node. Then totaled

those up for each node. This gave me the total heat rate at each node. From that, I was able to verify my

model two more ways. The first, another visual representation. Figure 6 shows the heat rate at each

node.

Figure 6

This again verifies our model because it shows that the heat rate is higher where there is a higher

temperature difference. It also shows that there are “hills and valleys” of heat transfer throughout the

plate. These hills and valleys end up canceling each other out when we sum all of the heat transfer up

across all of the nodes. We find that the total heat transfer is 8.48e-12 when we have 200 nodes

generated. This estimation of heat transfer becomes more accurate as you add more nodes to the

system.

We also wanted to calculate how much heat transfer was occurring across each surface. To do this I set

the appropriate side at each node that is along the surface equal to the matching surface heat transfer. I

do this because if the energy is entering the node then it must be leaving from the surface. For example,

in Figure 1 node 1 is in the Northwest corner. So, for node 1 I set qNorth = qTop . After doing this for every

node I was able to sum up the heat transfer across each surface and interpret that data.

Surfaces = 4×2 table

 Surface q

1 "North" 2.2069e+04

2 "East" -1.1010e+04

3 "South" -49.6477

4 "West" -1.1010e+04

Table 1

Table 1 shows the heat transfer across each of the surfaces. This data also verifies that our model is

working correctly. It shows that there is a positive heat transfer on the north surface and negative heat

transfers on the remaining 3 surfaces, with the east and west surfaces matching.

After calculating the heat transfers, we are able to use equation 11 and 12 to calculate an analytical

temperature at each node.

𝜃(𝑥, 𝑦) =

2

𝜋
∑

(−1)𝑛+1 + 1

𝑛
∙ sin (

𝑛𝜋𝑥

𝐿
) ∙

sinh (
𝑛𝜋𝑦

𝐿⁄)

sinh (𝑛𝜋𝑊
𝐿⁄)

∞

𝑛=1

(Eqn.11)

 𝑇𝑎 = 𝜃(𝑥, 𝑦) ∗ (𝑇2 − 𝑇1) + 𝑇1 (Eqn.12)

After finding the analytical temperature I was able to generate another surface plot, this plot is shown in

figure 7. This looks very similar to figure 2 which helps verify that the FDM model is correct.

Figure 7

I then plotted the analytical temperature in a 2-dimensional plot. This is shown in figure 8. This plot

looks very similar to figure 4 which further confirms that this model is correct.

Figure 8

The final verification is calculating the error between the analytical and FDM solutions. To do this I used

equation 13.

 𝐸𝑟𝑟𝑜𝑟 = (𝑇𝐹𝐷 − 𝑇𝑎)2 (Eqn. 13)

This equation takes the difference between the two temperature approximations at each node. I then

sum up the nodal errors to get a total error of 6.37 degrees C. Figure 9 and 10 show this error graphically

and we can see where the error lies.

Figure 9 Figure 10

 Both figure 9 and 10 show that most of the error occurs at the northeast and northwest corners. This

makes sense that the error would occur in these locations because this is where the situation presents

its flaws. The problem sets the northern surface to be 40 degrees Celsius and the remaining three sides

to be -10 degrees Celsius. This will cause a problem at these two corners because the corners are

simultaneously 40 degrees and -10 degrees. This causes issues to appear in our FDM model. However,

the error is small enough that the FDM model can be verified by the analytical solution. Also, as shown

in Figure 9 and 10, there is almost no error occurring throughout the rest of the plate. This means that

the FDM model is verified by the analytical solution.

Appendix A

The 9 Node Sample Problem
ME 450

Programmer: Phillip Krigbaum adapting from J. Wade 2023, adapting from D. Willy 2020

Date: March 10, 2023

This code is demonstrating the

clear; clc; close all; %Clearing/closing prior work

format short

Given:

%Problem Geometry

L = 2; %length of the domain in the x-direction, [m]

W = 4; %length of the domain in the y-direciton, [m]

%Material/Domain Properties

k = 20; %Thermal conductivity of the solid domain, [W/mK]

%Boundary Conditions

T2 = 40; %North boundary temperature, [C]

T1 = -10; %East, South and West boundary temperature, [C]

Find: Temperature Profile

Assumption: 2D flow, SS, qgen = 0, constant k

Solve:

Discretize the Problem

%Problem Discretization - needs to be FLEXIBLE

n_x =10 ;%discretized units in x-direction, [nd]

n_y = (W/L)*n_x; %discretized units in the y-direction

%discretization in x and y-direction are the same because the geometries

%are equivalent.

dx = L/n_x; %discretization size in x-direction, [m]

dy = W/n_y; %discretization size in y-direction, [m]

N = n_x*n_y; %Total unknown temperature nodes, [nd]

%Note formulating total unknown temperatures means I can vary mesh size w/o

%consequence to remaining equations.

x = dx/2:dx:L; % x-coordinates of T values (left to right)

y = (W-dy/2):-dy:0; % y-coordinates of T values (top to bottom)

[X,Y]=meshgrid(x,y);

xx = reshape(X',N,1);

yy = reshape(Y',N,1);

Initialize matrices and vectors

A = zeros(N); %Initilizs my matrix coefficient A based on total unknown nodes,

[C]

b = zeros(N,1); %Initializes the known constants based on total unknown nodes,

[C]

T = zeros(N,1); %Intializes unknown temperature, [C]

c = zeros(N,1); %Initializes a vector that identifies the node type (e.g. NW

corner, interior, etc)

Populate matrix A(i,j) & b(i)

for i = 1:N %Run through all a(i,j) and b(i) coefficients, remember

 if xx(i) <= dx && yy(i) >= W-dy %NW Corner

 A(i,i) = -6; %T(i) %temperature central to the nodal equation

 A(i,i+1) = 1; % right

 A(i,i+n_x) = 1; % bottom, one row down

 b(i) = -2*T2 - 2*T1; %known constants for T(i = 1)

 c(i) = 1; %identfies node type

 elseif xx(i) > (L - dx) && yy(i) > (W-dy)% NE Corner

 A(i,i) = -6;

 A(i,i-1) = 1; %left

 A(i,i+n_x) = 1; %below

 b(i) = -2*T1-2*T2; %knowns

 c(i) = 2; %node type

 elseif yy(i) > (W - dy) %top edge - Dirchlet

 A(i,i) = -5; %temperature central to the nodal equation

 A(i,i-1) = 1; %left

 A(i,i+1) = 1; %right

 A(i,i+n_x) = 1; % bottom

 b(i) = -2*T2; %known values

 c(i) = 3; %node type

 elseif xx(i) < dx && yy(i) < dy %SW Corner

 %xx(i) >= (L-dx/2) && yy(i) >= (W-dy/2) %NE Corner

 A(i,i) = -6; %temp central to nodal eqn

 A(i,i+1) = 1; %right

 A(i,i-n_x) = 1; %top

 b(i) = -4*T1; %knowns

 c(i) = 4; %node type

 elseif xx(i) >= (L-dx) && yy(i) <= (dy) %SE Corner

 A(i,i) = -6; %temp central to nodal eqn

 A(i,i-1) = 1; %left

 A(i,i-n_x) = 1; %top

 b(i) = -4*T1; %knowns

 c(i) = 5; %node type

 elseif xx(i) < dx %West Surface - Dirchlet

 A(i,i) = -5; %temp central to nodal eqn

 A(i,i+1) = 1; %right

 A(i,i-n_x) = 1; %top

 A(i,i+n_x) = 1; %below

 b(i) = -2*T1; %knowns

 c(i) = 6; %node type

 elseif xx(i) > L- dx %East Surface - Convective BC

 A(i,i) = -5; %temp central to nodal eqn

 A(i,i-1) = 1; %left

 A(i,i-n_x) = 1; %top

 A(i,i+n_x) = 1; %below

 b(i) = -2*T1; %knowns

 c(i) = 7; %node type

 elseif yy(i) < dy %South Surface - Adiabatic BC

 A(i,i) = -5; %temp central to nodal eqn

 A(i,i-1) = 1; %left

 A(i,i+1) = 1; %right

 A(i,i-n_x) = 1; %top

 b(i) = -2*T1; %knowns

 c(i) = 8; %node type

 else %Interior Node

 A(i,i) = -4; %temp central to nodal eqn

 A(i,i-1) = 1; %prior row

 A(i,i+1) = 1; %right

 A(i,i-n_x) = 1; %top

 A(i,i+n_x) = 1; %below

 b(i) = 0; %knowns

 c(i) = 9; %node type

 end

end

Solve unknown vector T(i)

T = A\b; %Matlab's Matrix Inversion Solver

Visualize the temperature distribution

1) Turn the (Nx1) T vector into a 2D (n_x) x (n_y) array using "reshape" function

T_FD= reshape(T,n_x,n_y)'; %Reshaping finite difference solved T_FD vector into

the 2D array (n_x by n_y)

3) Visualize Temperature data as a surface map

figure(1)

surf(X,Y,T_FD) %Note surface plot requires the X,Y coordinate arrays in order to

plot

xlabel('x-dir (m)')

ylabel('y-dir (m)')

zlabel('Temperature (Celsius)')

zlim([-50 50])

% view(60,45)

colorbar

4) Visualize temperature data as a heat map

figure(2)

h = heatmap(x,y,T_FD,'Colormap',summer);

% Note, a heat map requires the vectors of x and y, not the X,Y arrays

5) Visualize temperature data as a contour map

figure(3)

contourf(X,Y,T_FD,10)

% view(90,90)

colorbar

xlabel('x-Direction');

ylabel('y-Direction');

6) Check that nodes were assigned correctly

nodes = reshape(c,n_x,n_y)';

nodecheck = heatmap(x,y,nodes,"colormap",autumn)

7) Verify the numerical simulation

%initializing thermal energy flow vectors for each node and each domain

%surface

qtotal = zeros(N,1); %Net energy flow through the nodal finite volume

qnorth = zeros(N,1); %Net energy flow through the north surface

qeast = zeros(N,1); %Net energy flow through the east surface

qsouth = zeros(N,1); %Net energy flow through the south surface

qwest = zeros(N,1); %Net energy flow through the west surface

for i = 1:N %Run the energy balance through all nodes

 %%Solve qtotal at each node using the newly solved temperatures

 if xx(i) <= dx && yy(i) >= W-dy %NW Corner

 qtop = k * (T2 - T(i))/(dy/2); % Top Boundary Flow

 qright = k * (T(i+1) - T(i))/dx; % Right Boundary Flow

 qleft = k * (T1 - T(i))/(dx/2); % Left Boundary Flow

 qbott = k * (T(i+n_x) - T(i))/dy;% Bottom Boundary Flow

 qtotal(i) = qtop + qright + qleft + qbott;

 qnorth(i) = qtop; %Net energy flow through the north surface

 qeast(i) = 0; %Net energy flow through the east surface

 qsouth(i) = 0; %Net energy flow through the south surface

 qwest(i) = qleft; %Net energy flow through the west surface

 elseif xx(i) > (L - dx) && yy(i) > (W-dy)% NE Corner

 qtop = k * (T2 - T(i))/(dy/2); % Top Boundary Flow

 qright = k * (T1 - T(i))/(dx/2); % Right Boundary Flow

 qleft = k * (T(i-1) - T(i))/(dx); % Left Boundary Flow

 qbott = k * (T(i+n_x) - T(i))/dy;% Bottom Boundary Flow

 qtotal(i) = qtop + qright + qleft + qbott;

 qnorth(i) = qtop; %Net energy flow through the north surface

 qeast(i) = qright; %Net energy flow through the east surface

 qsouth(i) = 0; %Net energy flow through the south surface

 qwest(i) = 0; %Net energy flow through the west surface

 elseif yy(i) > (W - dy) %top edge - Dirchlet

 qtop = k * (T2 - T(i))/(dy/2); % Top Boundary Flow

 qright = k * (T(i+1) - T(i))/dx; % Right Boundary Flow

 qleft = k * (T(i-1) - T(i))/(dx); % Left Boundary Flow

 qbott = k * (T(i+n_x) - T(i))/dy;% Bottom Boundary Flow

 qtotal(i) = qtop + qright + qleft + qbott;

 qnorth(i) = qtop; %Net energy flow through the north surface

 qeast(i) = 0; %Net energy flow through the east surface

 qsouth(i) = 0; %Net energy flow through the south surface

 qwest(i) = 0; %Net energy flow through the west surface

 elseif xx(i) < dx && yy(i) < dy %SW Corner

 qtop = k * (T(i-n_x) - T(i))/(dy); % Top Boundary Flow

 qright = k * (T(i+1) - T(i))/dx; % Right Boundary Flow

 qleft = k * (T1 - T(i))/(dx/2); % Left Boundary Flow

 qbott = k * (T1 - T(i))/(dy/2);% Bottom Boundary Flow

 qtotal(i) = qtop + qright + qleft + qbott;

 qnorth(i) = 0; %Net energy flow through the north surface

 qeast(i) = 0; %Net energy flow through the east surface

 qsouth(i) = qbott; %Net energy flow through the south surface

 qwest(i) = qleft; %Net energy flow through the west surface

 elseif xx(i) >= (L-dx) && yy(i) <= (dy) %SE Corner

 qtop = k * (T(i-n_x) - T(i))/(dy); % Top Boundary Flow

 qright = k * (T1 - T(i))/(dx/2); % Right Boundary Flow

 qleft = k * (T(i-1) - T(i))/(dx); % Left Boundary Flow

 qbott = k * (T1 - T(i))/(dy/2);% Bottom Boundary Flow

 qtotal(i) = qtop + qright + qleft + qbott;

 qnorth(i) = 0; %Net energy flow through the north surface

 qeast(i) = qright; %Net energy flow through the east surface

 qsouth(i) = qbott; %Net energy flow through the south surface

 qwest(i) = 0; %Net energy flow through the west surface

 elseif xx(i) < dx %West Surface - Dirchlet

 qtop = k * (T(i-n_x) - T(i))/(dy); % Top Boundary Flow

 qright = k * (T(i+1) - T(i))/dx; % Right Boundary Flow

 qleft = k * (T1 - T(i))/(dx/2); % Left Boundary Flow

 qbott = k * (T(i+n_x) - T(i))/dy;% Bottom Boundary Flow

 qtotal(i) = qtop + qright + qleft + qbott;

 qnorth(i) = 0; %Net energy flow through the north surface

 qeast(i) = 0; %Net energy flow through the east surface

 qsouth(i) = 0; %Net energy flow through the south surface

 qwest(i) = qleft; %Net energy flow through the west surface

 elseif xx(i) > L- dx %East Surface - Convective BC

 qtop = k * (T(i-n_x) - T(i))/(dy); % Top Boundary Flow

 qright = k * (T1 - T(i))/(dx/2); % Right Boundary Flow

 qleft = k * (T(i-1) - T(i))/(dx); % Left Boundary Flow

 qbott = k * (T(i+n_x) - T(i))/dy;% Bottom Boundary Flow

 qtotal(i) = qtop + qright + qleft + qbott;

 qnorth(i) = 0; %Net energy flow through the north surface

 qeast(i) = qright; %Net energy flow through the east surface

 qsouth(i) = 0; %Net energy flow through the south surface

 qwest(i) = 0; %Net energy flow through the west surface

 elseif yy(i) < dy %South Surface - Adiabatic BC

 qtop = k * (T(i-n_x) - T(i))/(dy); % Top Boundary Flow

 qright = k * (T(i+1) - T(i))/dx; % Right Boundary Flow

 qleft = k * (T(i-1) - T(i))/(dx); % Left Boundary Flow

 qbott = k * (T1 - T(i))/(dy/2);% Bottom Boundary Flow

 qtotal(i) = qtop + qright + qleft + qbott;

 qnorth(i) = 0; %Net energy flow through the north surface

 qeast(i) = 0; %Net energy flow through the east surface

 qsouth(i) = qbott; %Net energy flow through the south surface

 qwest(i) = 0; %Net energy flow through the west surface

 else %Interior Node

 qtop = k * (T(i-n_x) - T(i))/(dy); % Top Boundary Flow

 qright = k * (T(i+1) - T(i))/dx; % Right Boundary Flow

 qleft = k * (T(i-1) - T(i))/(dx); % Left Boundary Flow

 qbott = k * (T(i+n_x) - T(i))/dy;% Bottom Boundary Flow

 qtotal(i) = qtop + qright + qleft + qbott;

 qnorth(i) = 0; %Net energy flow through the north surface

 qeast(i) = 0; %Net energy flow through the east surface

 qsouth(i) = 0; %Net energy flow through the south surface

 qwest(i) = 0; %Net energy flow through the west surface

 end

end

Heat Rate Solution:

figure(4)

qtotall = reshape(qtotal,n_x,n_y)';

surf(X,Y,qtotall)

title('Heat Rate Surface');

xlabel('x-direction (m)');

ylabel('y-direction (m)');

zlabel('Heat Rate (q)');

qtotal = sum(qtotal)

qnorth = sum(qnorth);

qeast = sum(qeast);

qsouth = sum(qsouth);

qwest = sum(qwest);

Surfaces = table('Size',[4

2],'VariableTypes',{'string','double'},'VariableNames',{'Surface','q'});

Surfaces(1,:) = {'North',qnorth};

Surfaces(2,:) = {'East', qeast};

Surfaces(3,:) = {'South', qsouth};

Surfaces(4,:) = {'West', qwest}

if qtotal<10^(-10)

 disp ('This Satisfies our Energy Balance Equation')

else

 disp ('This does not satisfy our Energy Balance Equation')

end

Error Calculation

theta = zeros(length(x),length(y));

for i = 1:n_x

 for j = 1:n_y

 for n = 1:100

 lambda = n*pi/L;

 theta(i,j) = theta(i,j) + (2/pi).*(((-

1)^(n+1)+1)/n).*(sin(lambda.*x(i)).*(sinh(lambda.*y(j))/(sinh(lambda.*W))));

 end

 end

end

T_a = theta.*(T2-T1) + T1; %Solve for Temp from theta

figure(5)

surf(x,y,T_a','edgecolor','none')

xlabel('x-dir (m)')

ylabel('y-dir (m)')

zlabel('Analytical Temperature [C]')

shading interp

zlim([-10 45])

figure(6)

contourf(x,y,T_a',20,'edgecolor','none')

c = colorbar;

c.Label.String = 'Analytical Temperature [C]';

Calculating ERROR

Err = (T_FD - T_a').^2;

Error_total = sum(Err);

Error_total = sum(Error_total);

fprintf('The Total Error is %.2f degrees [C]',Error_total);

figure(3)

surf(x,y,Err,'edgecolor','none')

xlabel('x-dir (m)')

ylabel('y-dir (m)')

zlabel('Error')

zlim([-1 2])

colorbar

figure(8)

contourf(x,y,Err,100,'edgecolor','none')

xlabel('x-direction (m)')

ylabel('y-direction (m)')

title('2-D Error visualization')

colorbar

